Minerals

WHAT IS A MINERAL?

There are five characteristics of a mineral

A mineral is **Naturally Occurring**

 A diamond created deep in the earth's crust is a mineral, but a diamond made in a laboratory by humans is not.

Exist in **SOLID** form

Have definite CHEMICAL COMPOSITION

• Eg. Halite (NaCl)

• Eg. Quartz (SiO₂) is always made up of two oxygen atoms bonded to a silicon atom.

Atoms arranged in **ORDERED PATTERN**

- Minerals are "crystalline" solids
- A crystal is a solid in which the atoms are arranged in a regular, repeating pattern

<u>INORGANIC</u>

- Means Not living nor made from living things.
- Organic substances are carbon-bases compounds made by living creatures (includes proteins, carbohydrates, and oils)
- Inorganic substances are non-living materials

Definition of a Mineral:

 A naturally occurring, inorganic, solid that has a definite chemical composition and crystal shape.

Spot the Minerals

diamond, pearl

• Water ice

• gold, coal

• quartz, rock salt

window glass,

Answers:

- Minerals: diamond, gold, quartz, halite
- Nonminerals: water, glass, pearl, coal

How do Minerals Form?

- Mostly from cooling magma:
- When magma cools, its atoms slow down and move closer together and arrange in different patterns.
- More than one type of mineral can form from the same mass of magma.
- The types of minerals that form depends on the types of elements present in the magma

Magma above ground, magma underground

- When molten material like magma (melted minerals) cools, the minerals start to crystallise.
- In general, the faster it cools, the faster the crystals form, so only smaller the crystals form.
- Magma deep under ground takes longer to cool off, giving minerals longer time to form --> making bigger because of long.

Process	Examples
Cooling	Cooling of Magma below ground or Cooling of Lava
	above ground. Eg. Mica, feldspar, quartz
Evaporation	Water carrying dissolved minerals evaporates:
	Gypsum, halite
Deposition	Water carrying dissovled minerals deposits minerals:
	Calcite, dolomite
Reaction	Minerals formed by Chemical Reactions: Gold,
	copper, sulfur, pyrite, galena
Metamorphism	Minerals subject to extreme heat and pressure can
	change to NEW minerals: Garnet, gaphite,
	magnetite, talc

Crystallisation by evaporation above ground

Crystallisation by evaporation above ground:

Veins underground

- When water captured under ground gets heated, for example by magma veins close to it, it attracts minerals around it and it becomes rich mineral-rich.
- When this water cools, the dissolved minerals crystallise. Eg.Naica, Mexico

MINERAL STRUCTURE

- A crystal is a regular geometric solid with smooth surfaces called crystal faces.
- Crystallographic axes are used to describe the shapes.

How do we classify over 3,000 different minerals?

- Minerals are grouped into **families** based on their **chemical composition** (what they are made of).
- eight basic classes: native elements, silicates, oxides, sulfides, sulfates, halides, carbonates, phosphates, and mineraloids.

Three Main Groupings:

- Rock-forming minerals
- Ores
- Gemstones

Rock Forming Minerals:

- Make up <u>Earth's crust</u>.
- Most are **silicates**.
- There are almost 5000 known mineral species, yet the vast majority of rocks are formed from combinations of a few common minerals, referred to as "rockforming minerals".
- Eg. feldspars, quartz, amphiboles, micas, olivine, garnet, calcite, pyroxenes.

SILICATE MINERALS

- <u>Largest</u> group, most important class of minerals (> 90% of minerals are silicates).
- Make up ~ <u>90%</u> of the Earth's crust.
- All contain <u>silicon</u> and <u>oxygen</u>

SILICA TETRAHEDRON

- Basic unit of structure of all silicate minerals is a <u>silica</u> <u>tetrahedron</u> (four oxygen atoms and one silicon atom) (SiO₄).
- Silicates are classified and named according to there <u>crystal structure</u> (the way the tetrahedra are <u>linked</u>
- (6 different ways to create 6 different silicates).

Sheet of tetrahedrons

Double chain

3-dimensional network of tetrahedrons

COMMON SILICATES

- Quartz silicon dioxide (SiO₂)
- Mica soft, flat shiny, breaks into sheets
- Feldspar most abundant family of minerals in Earth's crust, pearly luster
- Ferromagnesian silicates contain iron and
 - magnesium eg. <u>hornblende</u>

Other silicates

Asbestos Talc Olivine

Nonsilicate Minerals

- Minerals without silicon or oxygen (and therefore NO tetrahedral structure):
- Native Minerals
- Carbonates,
- Sulfides,
- Oxides,
- Halides,
- Phosphates.

NATIVE MINERALS

- Only one type of element
- Eg. Gold, silver, copper, diamond, sulphur, platinum

Carbonate Minerals

- Contain carbonate group (CO₃ -2) joined to metallic element.
- Eg. calcite (calcium carbonate) is the most common of

The carbonate ion is one carbon atom bonded to three oxygen atoms.

Calcite crystals in a bivalve shell.

Two most important carbonate minerals:

- <u>Calcite</u> CaCO₃ Calcium Carbonate
- most common, used in limestone and marble.
- Sea creatures build their shells with calcium carbonate.

Dolomite CaMg(CO₃)₂

The carbonate ion is one carbon atom bonder to three oxygen atoms.

Calcite crystals in a bivalve shel

• type of limestone used in marble building blocks, plant fertilizer and dietary supplements.

Calcite

• Minerva Terrace at Mammoth Hot Springs, Yellowstone Park, Wyoming

 \mathbf{CL}

OTHER CARBONATES

- Malachite (always green)
- Azurite (always blue) both contain copper carbonates

SULPHATES

- SO₄ plus other elements.
- tend to be soft and translucent
- Eg. Gypsum
- Eg. Barite

PHOSPHATES

- PO₄ plus other elements.
- not as common.
- often brightly colored
- often formed when other minerals are broken down by weathering.
- EG. Apatite

HALIDES

- Contain a halogen: fluorine, chlorine, iodine, bromine, combined with metallic elements.
- very soft and easily dissolved in water.
- Eg. Halite (NaCl)
- Eg. Fluorite

ORE FORMING MINERALS

- Used in industry.
- Minerals from which a usable amount of metal or non-metal can be removed for <u>profit</u> economically:
- Sulfides
- Oxides

SULFIDES

- Contain sulfur and another element other than oxygen, such as iron, lead, or nickel.
- tend to be heavy and brittle.
- Several important metal ores come from this group like the pyrite is an iron ore
- Galena lead ore
- Sphalerite zinc ore
- Chalcopyrite copper ore
 Pyrite (an iron sulfide is fool's gold)

OXIDES

- contain oxygen and another element, such as iron or aluminum.
- Range from dull ores like bauxite to gems like rubies and sapphires.
- **Hematite** is the most common iron oxide mineral.
- Magnetite iron oxide, magnetic.
- Eg. Lodestone was used to make first compass needles.

Mineraloids

- term used for those substances that do not fit neatly into one of these eight classes.
- Opal, jet, amber, and mother of pearl.

- Gemstones

 Valued because of their beauty
 - Value based on colour, which is caused by <u>impurities</u>.
 - Rubies and Sapphires are both forms of the mineral corundum
 - Rubies have chromium impurities
 - Sapphires have iron impurities
 - **Emerald** is a variety of the mineral beryl ($Be_3Al_2(SiO_3)_6$) colored green by trace amounts of chromium and sometimes vanadium

Second Largest Rough Diamond

Largest Diamond in the World

- On January 25, 1905, in South Africa, a 3,106-carat diamond is discovered during a routine inspection.
- Weighing 1.33 pounds, and christened the "Cullinan,"
- Was cut into 9 large stones and about 100 smaller ones

Homework

- Read Textbook p 34-36
- Answer # 8, 9, 10, 12 on page 37 due in 2 classes
- Study for quiz next class: Branches of ES, Formation, Atomic Theory.
- Mineral formation and Characteristics Quiz: Oct 7/8
- I hate people who trade with minerals:
- They take everything for granite

Giant crystal cave in Mexico

- Sci Show video
- https://youtu.be/O7yfx0ejELg