_			_		
⊢.	nr	`th	Sci	on	20
_	uı			-	LE

Seismic Waves Lab

Name:	

<u>Your Mission:</u> Work in a group of 3 carefully moving and timing the slinky to create and understand the differences between P-wayes, S-wayes and L-wayes.

Materials:

Spring Stop Watch Timer Pen/Pencil

Procedure:

- 1) Partner A will hold one end of the spring firmly in place on the floor or desk while Partner B moves the other end of the spring in each wave motion. Partner C measures the time it takes for one wave to travel one complete trip back and forth through the spring.
- 2) First create a P-wave (Push & Pull)
 - Practice creating P-waves by first pulling the spring toward you a bit and then pushing it away. Notice the way the wave travels along the spring.
 - Your group will do 3 trials of the P-wave, timing the wave as it does one complete trip back and forth.
 - Write down your times and find the average.

P-wave	Trial 1	Trial 2	Trial 3
Time (s)			

Average Time (s) = .	
Sketch:	

- 3) Next create an S-wave (Side to Side)
- Practice creating S-waves by wiggling the spring from side to side. Notice the different type of wave that travels along the spring.
- Your group will do 3 trials of the S-wave, timing the wave as it does one complete trip back and forth.
- Write down your times and find the average.

S-wave	Trial 1	Trial 2	Trial 3
Time (s)			

Average Time	(s) = :	
Skatch:		

- 4) Next create an L-wave (Up & Down)
- Practice creating L-waves by reducing your spring length so that when you lift the spring into the air and create up & down motions, the wave amplitudes are the same size as the Pand S-waves. Notice the different type of wave that travels along the spring.
- Your group will do 3 trials of the L-wave, timing the wave as it does one complete trip back and forth.
- Write down your times and find the average.

L-wave	Trial 1	Trial 2	Trial 3
Time (s)			

Time (s)		
Average Time (s) = Sketch:		

Investigation Questions:

- 1) a) Which type of wave moved through the spring most quickly?
- b) Write the order of the wave average time from fastest to slowest.
- c) How would each of these waves move differently through the earth during an earthquake?

- 2) Which wave do you think would be most destructive to property? Why?
- 3) If a seismogram records P-waves and L-waves but not S-waves, where was the earthquake epicenter located relative to the seismograph? Explain your thinking.