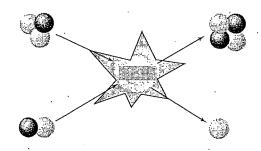
Section 7.3

Use with textbook pages 312-321.

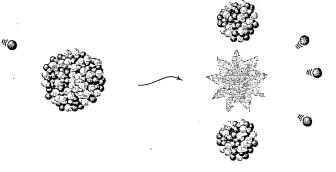
Radioactivity

Vo	ocabulary			
ch er In	ANDU reactor pain reaction nergy duced otope	neutron nuclear fission nuclear fusion nuclear reaction	proton subatomic particles Sun unstable	
	e the terms in the vocabully once.	ary box to fill in the blanks.	You may use each term	
1.	nuclei.	is the splitting of a heavy	nucleus into two lighter	
2.	. Heavy nuclei, like those of uranium-238, tend to be due to the repulsive forces between the many protons.			
3.	Nuclear fission is usually accompanied by a very large release of			
4.	A occurs when an atom's nucleus changes by gaining or releasing particles or energy. Atoms are changed from one into another, producing different elements.			
5.	In a nuclear reaction,, (e.g. protons, neutrons, and electrons) and gamma rays, can be emitted from the nucleus.			
6.	A nuclear reaction is by bombarding a nucleus with alpha particles, beta particles, or gamma rays.			
	· ·	p, is the same thing as a hydi		
8.	Α, 1	n, has a charge of 0 and a ma	ass number of 1.	
	A is an ongoing nuclear reaction in which some products go on to cause more nuclear reactions to occur.			
10.	The Canadian deuterium u nuclear power generation.	ranium reactor,lt is one of the safest nuclear	reactors in the world.	
11.	to make a bigger one. This and other stars.	is the process in which tw process occurs at the core o	o smaller nuclei join together	

Use with textbook pages 312-321.


Comparing nuclear fission and fusion

1. Complete the following table.


	Nuclear fission	Nuclear fusion
Give a description of the process.		**************************************
What is produced as a result of this nuclear process?		
Are the products radioactive?		
What is needed for this nuclear reaction to occur?		
Where does this process occur?		
Give an example of a nuclear equation.		

2. Identify the following diagrams as nuclear fission or nuclear fusion. Label the parent isotope(s), daughter isotope(s), neutron(s), and energy.

(a) _____

(p) ______

Use with textbook pages 312-321.

Nuclear fission and fusion reactions

Remember the following two rules when working with nuclear equations:

- I. The sum of the mass numbers does not change.
- II. The sum of the charges in the nucleus does not change.

Identify each nuclear equation (nuclear fission or nuclear fusion) and then complete the nuclear equation.

1.
$$\frac{1}{0}n + \frac{235}{92}U \longrightarrow \frac{143}{54}Xe + \frac{90}{38}Sr + \frac{1}{0}n$$

2.
$${}^{2}_{1}H + \underline{\hspace{1cm}} \longrightarrow {}^{1}_{1}H + {}^{3}_{1}H$$

3.
$$\frac{1}{0}n + \frac{235}{92}U \longrightarrow \frac{152}{60}Nd + \underline{\qquad} + 4\frac{1}{0}n$$

4.
$${}_{1}^{2}H + {}_{1}^{2}H \longrightarrow {}_{2}^{3}He + ____$$

5.
$$\frac{1}{0}n + \underline{\hspace{1cm}} \longrightarrow \frac{90}{37}Rb + \frac{143}{55}Cs + 3\frac{1}{0}n$$

6.
$${}_{1}^{2}H + {}_{1}^{3}H \longrightarrow {}_{2}^{4}He + \underline{\hspace{1cm}}$$

7.
$$\frac{1}{0}n + \frac{256}{100}$$
Fm ----> ____ + $\frac{140}{54}$ Xe + $4\frac{1}{0}n$

8.
$$\frac{1}{0}n + \frac{235}{92}U \longrightarrow \frac{106}{39}Y + \underline{\qquad} + 3\frac{1}{0}n$$

9.
$$\frac{1}{0}n + \frac{235}{92}U \longrightarrow \frac{115}{49}In + \frac{118}{43}Tc + \underline{\qquad} \frac{1}{0}n$$

10.
$$\frac{1}{0}n + \underline{\hspace{1cm}} \longrightarrow \frac{137}{52} \text{Te} + \frac{100}{42} \text{Mo} + 3\frac{1}{0}n$$