Section 7.1

Use with textbook pages 294-297.

## Alpha, beta, and gamma radiation

1. Label the following diagram. Identify the penetrating power of the three forms of radioactive decay products: alpha particle, beta particle, and gamma ray.



2. Indicate whether the description is referring to an alpha particle, a beta particle, or a gamma ray. The description can refer to more than one of the forms of radiation.

| gamma rays the decemption can refer to more than one of the fo |
|----------------------------------------------------------------|
| (a) $^{0}\gamma$ gamma ray                                     |
| (b) -1 \$\beta \ or \frac{0}{1}e  \text{bula particle}         |
| (c) $\frac{4}{2}\alpha$ 0+++r $\frac{4}{2}$ He alpha           |
| (d) has a charge of 0 Qamma                                    |
| (e) has a charge of 1- <u>beta</u>                             |
| (f) has a charge of 2+ alpha                                   |
| (g) is a helium nucleusalpha                                   |
| (h) is a high-speed electron beta                              |
| (i) is emitted from the nucleus all three                      |
| (j) is emitted only during beta decay                          |
| (k) is emitted only during alpha decay alpha                   |
| (1) can be stopped by aluminum foil                            |
| (m)is emitted only during gamma decay                          |
| (n) is affected by electric and magnetic fields alpha + bela   |
| (o) is not affected by electric and magnetic fields @ amnow    |
| (p) is a high energy wave with short wavelengths               |
| $\mathcal{J}$                                                  |

(r) has low penetrating power (can be stopped by a single piece of paper)

(q) is the highest energy form of electromagnetic radiation \_

Use with textbook pages 286-299.

## Radioactive decay and nuclear equations

Remember the following two rules when working with nuclear equations:

- I. The sum of the mass numbers does not change.
- II. The sum of the charges in the nucleus does not change.

Identify each nuclear equation as alpha decay, beta decay, or gamma decay, and then complete the nuclear equation.

| omplete the nuclear equation. |                                 |                                       |                                |                |  |
|-------------------------------|---------------------------------|---------------------------------------|--------------------------------|----------------|--|
| 1.                            | 32 <sub>P</sub>                 | 32S $16$                              | + <u>0B</u>                    | <u>beta</u>    |  |
| 2.                            |                                 | 214 PW                                | $+\frac{4}{2}$ He              | <u>alpha</u>   |  |
| 3.                            | 17                              | > 18 Ar                               | $^{0}_{+}$ $^{1}e$             | bela           |  |
| 4.                            | <sup>24</sup> Mg*               | >12Mg                                 | $+ \frac{0}{0}\gamma$          | gamma          |  |
| 5.                            | <sup>234</sup> <sub>91</sub> Pa | > 230 Ac                              | $+\frac{4}{2}\alpha$           | alpha          |  |
| 6.                            | <sup>141</sup> <sub>58</sub> Ce | > 141 Pr                              | 0<br>+ -1                      | beta           |  |
| 7.                            | <sup>216</sup> <sub>84</sub> Po | 216<br>25At                           | <sub>+ -1</sub> β              | peta           |  |
| 8.                            | <sup>20</sup> <sub>9</sub> F    | $\sim \frac{20}{10}$ Ne               | + <u>1</u> B                   | bela           |  |
|                               | <sup>58</sup> Fe*               | $\longrightarrow$ $\frac{58}{26}$ Fe  | + 0 7                          | - gammer       |  |
| 10.                           | 225<br>89 Ac                    | 221 Fr                                | $+$ $\frac{4}{2}$ $\alpha$     | alpha          |  |
|                               | <sup>149</sup> Gd*              | 149<br>> 69 Gd                        | + 0 γ                          | <u>gamma</u>   |  |
|                               | <sup>226</sup> <sub>86</sub> Ra | $\longrightarrow$ $\frac{222}{26}$ Rn | + 2Hc                          | alpha          |  |
| 13.                           | 217 70                          | > <sup>212</sup> <sub>82</sub> Pb     | <sup>0</sup> <sub>+ -1</sub> β | <u>beta</u>    |  |
|                               | <sup>214</sup> <sub>83</sub> Bi | > <sup>210</sup> Tl                   | + 2 2                          | alpha.         |  |
| 15.                           | 254<br>98. Cf *                 | 254 Cf<br>> 98 Cf                     | + 0 γ                          | <u>Garnane</u> |  |